

Keys to Understanding and Predicting Climate

- Characterize external climate forcing agents
 - Natural, e.g. solar variability
 - Anthropogenic: greenhouse gases, <u>aerosols</u> (fossil fuels, biomass burning)
 - Concentration
 - Distribution: latitude, longitude, and altitude
 - Radiative characteristics: positive forcing net warming; or negative forcing - net cooling
 - Use computer models to predict the response of the climate system to a change in forcing agent(s)
 - Include all physical processes and feedbacks accurately; most difficult to represent: <u>clouds</u>

Assimilation of Lidar Aerosol Data

Components of the Aerosol Model DATA MODEL

LITE data, Sept.1994

Mission Concept

Complementary Instruments

- CloudSat radar (cloud profiles)
- Aqua CERES (top-of-the-atmosphere radiation)
- Aqua AIRS/AMSU-A/HSB (atmospheric state)
- Aqua MODIS (aerosol/cloud properties)
- PARASOL (aerosol/cloud properties)
- Aura OMI (aerosol absorption)

- Orbit: 705 km, 98° inclination, in formation with Aqua and CloudSat
- Launch Early 2005
- Mission duration: 3 years
- Three co-aligned instruments:
 - 3-channel lidar
 - 532 nm ||
 - 532 nm ⊥
 - 1064 nm

Vertical distribution of aerosols and clouds

- · Imaging IR radiometer-
- Wide-field camera

Aerosol / cloud properties

CALIPSO Simulated 1 Day Orbit Coverage

CALIPSO will provide global measurements of clouds and aerosols. The orange groundtracks show the locations of where CALIPSO will measure clouds and aerosols over a one day period.

Satellite covers a fixed grid every 16 days

16-day repeat cycle produces a grid spaced by 172 km at the equator

Correlative Measurement Strategy

Quid Pro Quo (QPQ) measurements

- coordinate with established programs
- well-calibrated and characterized instrumentation
- spatial matching requirements dictate the usefulness of the sites

Field campaigns

- can provide comprehensive measurement suites required to fully understand the retrieval performance
- can provide spatially and temporally matched data in any location
- the number of independent samples obtained is usually limited
- need to coordinate with other NASA and international activities

Other satellites

- climatological data sets
- large number of comparisons
- coverage over regions without suitable ground sites
- limited usefulness because of uniqueness of CALIPSO measurement suite

QPQ Measurement Distribution

Collaborative Field Campaigns

Tropical West-Pacific Mission

- Jan-Mar 2005
- ER-2, WB-57, P-3, ships, ground sites

North America Outflow Study (INTEX-W)

- summer 2004/2005 and spring 2006/2007
- DC-8, P3

AURA validation missions

- 2004/05 Specific campaigns & Quarterly
- ER-2, DC-8, WB-57 (TBD)

West Africa Monsoon Field Campaign

- Apr–Oct 05 and Jan-Feb 07
- Airplanes, ground sites

Mediterranean Campaign (TBD)

Satellite Observations

MODIS

- Visible/IR τ , aerosol size information

MISR

Visible τ, aerosol typing

PARASOL

 $-\tau$, depolarization

GLAS

- backscatter lidar 532, 1064 nm
- consistency checking

SAGE III

– stratospheric τ

TOMS

aerosol typing

Plume of Saharan dust transported over the eastern Atlantic Ocean

Validation Activities Post Launch

- Collect and archive comparison data sets
- Conduct instrument and algorithm retrieval analysis
- Review validation analysis with Science Team
- Release Level 2 data to LaRC Atmospheric Sciences Data Center (DAAC) with statement on data quality (18 months after launch)
- Submit validation papers (18 months after launch)

Conclusion

- CALIPSO will make important measurements of cloud and aerosol properties that will significantly improve our understanding of both direct and indirect forcing effects on climate
- The data sets generated by these measurements will afford the science community a unique opportunity to conduct research in Earth science
- Validation studies will allow the participation of a wide range of groups in CALIPSO science
- CALIPSO: space-based laser remote sensing of clouds and aerosols for a better understanding of climate change issues; learn more at http://www-calipso.larc.nasa.gov/